Innovative chitosan-based biomimetic scaffold for wound repair and tissue engineering

The primary function of a wound dressing is the protection against the environment. For extended wounds or hard-to-heal ulcers, additional properties would be highly desirable, such as the stimulation of the healing process or the improvement of the overall quality of the repaired tissue.

Description
Our scientists have developed a tridimensional-layered chitosan scaffold made of:

• a porous support (sponge) allowing absorbance of exudates;
• a nanofiber membrane allowing adhesion and proliferation of endothelial cells, keratinocytes and fibroblasts.

The nanofiber membrane is electrospun onto the porous support layer. The whole device is stabilized by the fusion of the 2 layers.

Advantages
• Fully biocompatible
• Allows adhesion, growth and differentiation of the main cell types of the skin
• Progressive integration and remodeling of the nanofibrillar compartment in vivo
• Stimulation of the closure of skin wounds in vivo
• Easy manipulation of the whole device
• Possibility to peel off the support (sponge) layer, keeping the wound bed intact during the renewal of the dressing and allowing use of the chitosan nanofibrillar scaffold as a guide to facilitate tissue repair

Potential Applications
• Wound Repair, in particular chronic ulcer treatment
• Tissue engineering
• Biomaterials

Opportunities
Research collaboration and/or license agreement

Patent Status
Ongoing european patent procedure
Research Team: Laboratory of Connective Tissues Biology, GIGA-Research
Dr. Alain Colige

The research projects in the Laboratory of Connective Tissues Biology (LCTB) aim at investigating the molecular mechanisms used by cells to detect and react to environmental physico-chemical signals, including the composition and the mechanical properties of the extracellular matrix.

The LCTB is also interested in the molecular mechanisms involving several classes of proteins (such as RhoGTPases, ADAMTS enzymes and growth factors, especially VEGF) during tumor progression, normal and pathological angiogenesis, wound healing and fibrosing processes. The LCTB participates also, in collaboration with several clinical departments, in studies concerning diverse acquired and heritable diseases such as asthma, aortic aneurysms and mitral valve prolapse.
Innovative chitosan-based biomimetic scaffold for wound repair and tissue engineering

☐ I am interested in learning more about the general aspects of this technology. Please contact me.

The best time to reach me is: __________________________________________________

☐ I would like an electronic version of this technology.

☐ I would like to learn more about the specifics of this technology and would be willing to complete a Confidential Disclosure Form in order to discuss it further.

☐ I am not interested in this technology because: ______________________________________

______________________________________________________________________

______________________________________________________________________

☐ I am not interested in this technology but would be interested in learning more about (please specify): ______________________________________

______________________________________________________________________

______________________________________________________________________

Name: ________________________________________________________

Title: ________________________________________________________

Company: ________________________________________________________

Address: ________________________________________________________

______________________________________________________________________

Phone: ___________________ Fax: ____________________

E-mail: ____________________

Please send it back to Gesval

info@gesval.be - Fax: + 32 4 349 85 20